On Voiculescu’s Semicircular Matrices

نویسنده

  • Junhao Shen
چکیده

Assume M is a type II1 von Neumann algebra, the algebra of n × n matrices over another von Neumann algebra N , with the tracial state τM. In this article, we discuss the properties of semicircular elements that are free with, with respect to τM, the algebra Dn consisting of scalar diagonal matrices in M. Then we define a concept “matricial distance” of two elements in M and compute it when the two elements are free semicircular elements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2 A new application of random matrices : Ext ( C ∗ red ( F 2 ) ) is not a group

In the process of developing the theory of free probability and free entropy, Voiculescu introduced in 1991 a random matrix model for a free semicircular system. Since then, random matrices have played a key role in von Neumann algebra theory (cf. [V8], [V9]). The main result of this paper is the following extension of Voiculescu’s random matrix result: Let (X (n) 1 , . . . ,X (n) r ) be a syst...

متن کامل

0 A ug 2 00 3 Non - commutative Polynomials of Independent Gaussian Random Matrices . The Real and Symplectic Cases

In [HT2] Haagerup and Thorbjørnsen prove the following extension of Voiculescu’s random matrix model (cf. [V2, Theorem 2.2]): For each n ∈ N, let X 1 , . . . ,X (n) r be a system of r independent complex self-adjoint random matrices from the class SGRM(n, 1 n), and let x1, . . . , xr be a semicircular system in a C ∗-probability space. Then for any polynomial p in r non-commuting variables the ...

متن کامل

Traffic distributions and independence: permutation invariant random matrices and the three notions of independence

The distributions of traffics are defined and are applied for families of larges random matrices, random groups and infinite random rooted graphs with uniformly bounded degree. There are constructed by adding axioms in Voiculescu’s definition of ∗-distribution of non commutative random variables. The convergence in distribution of traffics generalizes Benjamini, Schramm, Aldous, Lyons’ weak loc...

متن کامل

Dt–operators and Decomposability of Voiculescu’s Circular Operator

The DT–operators are introduced, one for every pair (μ, c) consisting of a compactly supported Borel probability measure μ on the complex plane and a constant c > 0. These are operators on Hilbert space that are defined as limits in ∗– moments of certain upper triangular random matrices. The DT–operators include Voiculescu’s circular operator and elliptic deformations of it, as well as the circ...

متن کامل

Asymptotic Freeness Almost Everywhere for Random Matrices

Voiculescu’s asymptotic freeness result for random matrices is improved to the sense of almost everywhere convergence. The asymptotic freeness almost everywhere is first shown for standard unitary matrices based on the computation of multiple moments of their entries, and then it is shown for rather general unitarily invariant selfadjoint random matrices (in particular, standard selfadjoint Gau...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005